全部
logo
第5卷, 第3期
新闻2018-09-01
Fei Li
In May 2018, a Maryland-based professional association, namely the Association of Chinese Americans in Cancer Research (ACACR, Baltimore, MD, USA; http://www.acacr.org/) reached the agreement with the copyright holder of Genes & Diseases, Chongqing Medical University (Chongqing, China), to form an alliance in scientific publishing of exciting findings in basic, translational, and clinical biomedical research.
综述2018-05-17
Yi-Jun Wang,Rochelle Fletcher,Jian Yu,Lin Zhang
Emerging evidence suggests that the clinical success of conventional chemotherapy is not solely attributed to tumor cell toxicity, but also results from the restoration of immunosurveillance, which has been largely neglected in the past preclinical and clinical research. Antitumor immune response can be primed by immunogenic cell death (ICD), a type of cell death characterized by cell-surface translocation of calreticulin (CRT), extracellular release of ATP and high mobility group box 1 (HMGB1), and stimulation of type I interferon (IFN) responses. Here we summarize recent studies showing conventional chemotherapeutics as ICD inducers, which are capable of modulating tumor infiltrating lymphocytes (TILs) and reactivating antitumor immunity within an immuno-suppressive microenvironment. Such immunological effects of conventional chemotherapy are likely critical for better prognosis of cancer patients. Furthermore, combination of ICD-inducing chemotherapeutics with immunotherapy is a promising approach for improving the clinical outcomes of cancer patients.
关键词Antitumor immunity;Autophagy;Conventional chemotherapy;ER stress;Immunogenic cell death;Immunosurveillance;
综述2018-07-20
Jiang-Jiang Qin,Xin Li,Courtney Hunt,Wei Wang,Hui Wang,Ruiwen Zhang
The p53 tumor suppressor plays a major role in controlling the initiation and development of cancer by regulating cell cycle arrest, apoptosis, senescence, and DNA repair. The MDM2 oncogene is a major negative regulator of p53 that inhibits the activity of p53 and reduces its protein stability. MDM2, p53, and the p53-MDM2 pathway represent well-documented targets for preventing and/or treating cancer. Natural products, especially those from medicinal and food plants, are a rich source for the discovery and development of novel therapeutic and preventive agents against human cancers. Many natural product-derived MDM2 inhibitors have shown potent efficacy against various human cancers. In contrast to synthetic small-molecule MDM2 inhibitors, the majority of which have been designed to inhibit MDM2-p53 binding and activate p53, many natural product inhibitors directly decrease MDM2 expression and/or MDM2 stability, exerting their anticancer activity in both p53-dependent and p53-independent manners. More recently, several natural products have been reported to target mutant p53 in cancer. Therefore, identification of natural products targeting MDM2, mutant p53, and the p53-MDM2 pathway can provide a promising strategy for the development of novel cancer chemopreventive and chemotherapeutic agents. In this review, we focus our discussion on the recent advances in the discovery and development of anticancer natural products that target the p53-MDM2 pathway, emphasizing several emerging issues, such as the efficacy, mechanism of action, and specificity of these natural products.
关键词MDM2;Natural products;Oncogene;p53;Tumor suppressor;
研究简报2018-07-11
Yong-Guo Zhang,Yinglin Xia,Rong Lu,Jun Sun
Fish oil is a natural product that has shown efficacy for managing inflammatory conditions with few side effects. There is emerging evidence that crosstalks between gut epithelial cells and immune cells contribute to chronic infectious diseases. HIV-infected (HIV+) older adults show age-related co-morbidities at a younger age than their uninfected counterparts. Persistent inflammation related to the chronic viral infection and its sequelae is thought to contribute to this disparity. However, little is known about whether fish oil reduces intestinal inflammation in HIV + patients. We measure inflammation and gut barrier function in HIV + older adults (median age = 52, N = 33), following 12 weeks of fish oil supplementation (a total daily dose of 1.6 g of omega-3 fatty acids). We showed a reduction in inflammation and gut permeability as measured by CD14, inflammatory cytokines, lipopolysaccharide, and lipopolysaccharide binding protein. The results indicate that older HIV + adults may benefit from a diet supplemented with the omega-3 fatty acids found in fish oil.
关键词HIV;Inflammation;Intestinal epithelium;Lipopolysaccharide (LPS);LPS binding protein (LBP);Omega 3 fatty acids;Tight junctions;Zonulin;
研究文章2018-04-27
Weiwei Xie,Wei Zheng,Min Liu,Qizhong Qin,Yunpeng Zhao,Zhi Cheng,Fengjin Guo
Inflammation is indispensable for host defense, whereas excessive inflammation often develop inflammatory diseases. Autophagy is thought to be engaged in many extracellular stress responses, such as starvation and innate immunity. Thus, autophagy plays an important role in maintaining homeostasis. The purpose of this study was to elucidate the function of BRF1 in the regulation of inflammation and autophagy response in macrophages. We found that BRF1 inhibited the LPS-induced inflammatory factors expression and the autophagy flux in macrophage. Furthermore, inhibition autophagy with 3-MA can attenuate the suppressive effect of BRF1 on LPS-mediated inflammation. In addition, MAPK/ERK signaling pathway was involved in the BRF1 inhibition inflammation and autophagy in macrophages. These findings indicate that BRF1 attenuates LPS-induced inflammatory factors secretion through autophagy, at least in part, through MAPK/ERK signaling pathway.
关键词Autophagy;BRF1;Inflammation;Macrophage;MAPK/ERK;
研究文章2018-04-24
Yamin Liu,Ting-Li Han,Xiaofang Luo,Yuxiang Bai,Xuehai Chen,Wei Peng,Xi Xiong,Philip N. Baker,Chao Tong,Hongbo Qi
Preeclampsia is characterized by new onset of hypertension and proteinuria after 20 weeks'gestation and is a leading cause of maternal and neonatal morbidity and mortality. The pathogenesis of preeclampsia is often associated with aberrant trophoblast function that leads to shallow placental implantation. However, the exact underlying mechanisms remain unclear. Placental LncZBTB39-1:2 expression level was investigated in 20 healthy placentae and 20 placentae with preeclampsia using qRT-PCR, and the metabolic profile of trophoblasts overexpressing LncZBTB39-1:2 in vitro was analysed using gas chromatography-mass spectrometry (GC-MS). In this study, we found that the expression of LncZBTB39-1:2 was significantly higher in preeclamptic placentae than in healthy placentae. Our metabolomics results have shown that tricarboxylic acid cycle intermediates and metabolites related to carbohydrate metabolism were decreased with the overexpression of LncZBTB39-1:2 in HTR8/SVneo cells. These findings were validated by detecting a lower level of intracellular ATP in HTR8/Vneo cells. Furthermore, the migration of HTR8/SVneo cells was compromised when cells were transfected with a plasmid encompassing LncZBTB39-1:2 overexpression. From these results, we conclude that abnormal levels of LncZBTB39-1:2 expression might lead to aberrant conditions in HTR-8/SVneo trophoblast cells. Aberrant conditions might be associated with dysregulated trophoblast migration and subsequent failure of uterine spiral artery remodelling, a pathogenesis recognised as a contributing factor in the aetiology of preeclampsia.
关键词Complications;GC-MS;Long noncoding RNA;Metabolomics;Preeclampsia;
研究文章2018-06-15
Yongying Hou,Ke Wang,Weijun Wan,Yue Cheng,Xia Pu,Xiufeng Ye
Ischemic stroke is a common disease with high mortality and morbidity worldwide. One of the important pathophysiological effects of ischemic stroke is apoptosis. A neuroprotective effect is defined as the inhibition of neuronal apoptosis to rescue or delay the infarction in the surviving ischemic penumbra. Resveratrol is a natural polyphenol that reportedly prevents cerebral ischemia injury by regulating the expression of PI3K/AKT/mTOR. Therefore, this study aimed to elucidate the neuroprotective effect of resveratrol on cerebral ischemia/reperfusion injury and to investigate the signaling pathways and mechanisms through which resveratrol regulates apoptosis in the ischemic penumbra. Rats were subjected to middle cerebral artery occlusion for 2 h followed by 24 h reperfusion. Cerebral infarct volume was measured using 2% TTC staining. TUNEL staining was conducted to evaluate neuronal apoptosis. Western blotting and immunohistochemistry were used to detect the proteins involved in the JAK2/STAT3/PI3K/AKT/mTOR pathway. The results suggested that resveratrol significantly improved neurological function, reduced cerebral infarct volume, decreased neuronal damage, and markedly attenuated neuronal apoptosis; these effects were attenuated by the inhibition of PI3K/AKT with LY294002 and JAK2/STAT3 with AG490. We also found that resveratrol significantly upregulated the expression of p-JAK2, p-STAT3, p-AKT, p-mTOR, and BCL-2 and downregulated expression of cleaved caspase-3 and BAX, which was partially reversed by LY294002 and AG490. These results suggested that resveratrol provides a neuroprotective effect against cerebral ischemia/reperfusion injury, which is partially mediated by the activation of JAK2/STAT3 and PI3K/AKT/mTOR. Resveratrol may indirectly upregulate the PI3K/AKT/mTOR pathway by activating JAK2/STAT3.
关键词AKT;Ischemic penumbra;mTOR;Resveratrol;STAT3;Stroke;
研究文章2018-06-25
W.E.I. Yi,Tang Xiang-Liang,Zhou Yu,Liu Bin,Shen Lian-Ju,Long Chun-lan,L.I.N. Tao,H.E. Da-wei,W.U. Sheng-de,W.E.I. Guang-hui
Di-(2-ethylhexyl) phthalate (DEHP), is known to impair testicular functions and reproduction. However, its effects on immature testis Blood-testis barrier (BTB) and the underlying mechanisms remain obscure. We constructed a rat model to investigate the roles of autophagy in BTB toxicity induced by DEHP. Sprague-Dawley rats were developmentally exposed to 0, 250 and 500 mg/kg DEHP via intragastric administration from postnatal day (PND) 1 to PND 35. Testicular morphology, expressions of BTB junction proteins and autophagy related proteins were detected. In addition, expressions of oxidative stress markers were also analyzed. Our results demonstrated that developmental DEHP exposure induced decreasing organ coefficients of immature testes and severe testicular damage in histomorphology. The expressions of junctional proteins were down-regulated significantly after DEHP treatment. Intriguingly, DEHP simultaneously increased the number of autophagosomes and the levels of autophagy marker LC3-II and p62, suggesting that the accumulated autophagosomes resulted from impaired autophagy degradation. Moreover, the expressions of HO-1 and SOD levels remarkably decreased after DEHP exposure. Vitamins E and C could alleviate the DEHP-induced oxidative stress, reverse the autophagy defect and restore the BTB impairment. Taken together, DEHP exposure destroys immature testis blood-testis barrier (BTB) integrity through excessive ROS-mediated autophagy.
关键词Autophagy;BTB;DEHP;Immature testis;Oxidative stress;
研究文章2018-02-13
Mukul Rastogi,Subendu Sarkar,Ankita Makol,Rana Sandip Singh,Uma Nahar Saikia,Dibyajyoti Banerjee,Seema Chopra,Anuradha Chakraborti
Rheumatic heart disease (RHD) is a major cause of cardiovascular morbidity and mortality in developing nations like India. RHD commonly affects the mitral valve which is lined by a single layer of endothelial cells (ECs). The role of ECs in mitral valve damage during RHD is not well elucidated. In here, anti-endothelial cell antibody from RHD patients has been used to stimulate the ECs (HUVECs and HMVECs). ECs proinflammatory phenotype with increased expression of TNFα, IL-6, IL-8, IFNγ, IL-1β, ICAM1, VCAM1, E-selectin, laminin B, and vimentin was documented in both ECs. The promoter hypomethylation of various key inflammatory cytokines (TNFα, IL-6, and IL-8), integrin (ICAM1) associated with leukocyte transendothelial migration, and extracellular matrix genes (vimentin, and laminin) were also observed. Further, the in-vitro data was in accordance with ex-vivo observations which correlated significantly with the etiological factors such as smoking, socioeconomic status, and housing. Thus, the study sheds light on the role of ECs in RHD which is a step forward in the elucidation of disease pathogenesis.
关键词Anti-Endothelial cell antibodies;DNA Methylation;Endothelial cells;Inflammation;Rheumatic heart disease;
研究文章2018-06-15
Qinghua Yang,Shujuan Zhu,Jin Xu,Chenglin Tang,Kaihui Wu,Yanjun Wu,Yiying Wang,Huajun Sheng
Alzheimer's disease (AD) is a progressive neurodegenerative disease and its incidence will increase with age and is aggravating. The senile plaques (SPs) are one of three main pathological features in AD patients, which are formed by amyloid β-protein (Ab) over-accumulation.β-amyloid precursor protein (APP), β-site APP cleavage (BACE1), and insulin degrading enzyme (IDE) proteins participate in the process of Ab production and degradation. At present, the pathogenesis of AD is not yet clear and the current treatment methods can only relief the related symptoms of AD. The electro-acupuncture (EA) is a traditional Chinese medicine treatment combined the acupuncture and electrical stimulation and the treatment effect can also be controlled by transform the electrical frequency. Thus, in this experiment, we carried out behavioral test, immunohistochemistry (IHC), and Western Blot (WB) after different period treatments to the model mice by electro-acupuncturing "Baihui" and "Shenshu" acupoints in APP+/PS1+ double transgenic mice. It was found that the EA therapy can improve the ability of learning, memory and spatial exploration, and reduce the deposition of SPs in brain of AD model mice, and reduce the expressions of APP and BACE1, increase the expression of IDE protein. These results prompt that EA can effectively alleviate the pathological process of AD. We speculate that EA may play a comprehensive role in preventing the development of AD, considering the previous data.
关键词Alzheimer';s disease;Amyloid β-protein;Electro-acupuncture;Senile plaques;Transgenic mice;
研究文章2018-06-06
Yi Hou,Xuemei Cao,Xiangnan Hu,Xinyu Li,Xiaoqin Shi,Hongying Wang,Chuan Peng,Jiayu Li,Jibin Li,Qifu Li,Chaodong Wu,Xiaoqiu Xiao
Traditional thiazolidinediones (TZDs), such as rosiglitazone, are peroxisome proliferator-activated receptor γ (PPARγ) potent agonists that can be used to treat type 2 diabetes but carry unwanted effects, including increased risk for fracture. The present work aimed to compare the insulin-sensitizing efficacies and bone-loss side effects of CMHX008, a novel TZDs-like PPARγ partial agonist, with those of rosiglitazone. A TR-FRET PPARγ competitive binding assay was used to compare the binding affinity between CMHX008 and rosiglitazone. Mice were administered vehicle, CMHX008 or rosiglitazone for 16 weeks. Mesenchymal stem cells (MSCs) were used to examine differences in differentiation into osteoblasts after compounds treatment. TR-FRET showed lower affinity to PPARγ by CMHX008 compared with rosiglitazone. Mice treated with CMHX008 showed insulin sensitization similar to that of mice treated with rosiglitazone, which was related to the significant inhibition of PPARγ Ser273 phosphorylation and improved insulin sensitivity by facilitating the phosphorylation of insulin receptor and Akt in adipose tissues. Micro-CT and histomorphometric analyses demonstrated that the degree of trabecular bone loss after treatment with CMHX008 was weaker than that observed with rosiglitazone, as evidenced by consistent changes in BV/TV, Tb. N, Tb. Th, Tb. Sp, and the mineral apposition rate. MSCs treated with CMHX008 showed higher ALP activity and mRNA levels of bone formation markers than did cells treated with rosiglitazone in the osteoblast differentiation test. Thus, CMHX008 showed insulin-sensitizing effects similar to those of rosiglitazone with a lower risk of bone loss, suggesting that PPARγ sparing eliminates the skeletal side effects of TZDs while maintaining their insulin-sensitizing properties.
关键词Osteoblasts;Peroxisome proliferator-activated receptor γ;Thiazolidinediones;TR-FRET;Type 2 diabetes mellitus;
研究文章2018-11-28
Rui Gong,Lin He,HongZhong Zhou,ShengTao Cheng,Fang Ren,Juan Chen,JiHua Ren
Argininosuccinate lyase (ASL) plays an important role in the hepatic urea cycle, and can catalyze the reversible reaction of argininosuccinate to arginine and fumarate. However, the function of ASL in hepatocellular carcinoma (HCC) is not fully understood. In this study, we found that ASL expression was frequently upregulated in HCC tissues and HCC cell lines. Knock down of ASL inhibited cell proliferation and induced apoptosis in HCC cells. Mechanistic studies revealed the BCL2-associated X protein (Bax) signaling pathway which determines cancer cell apoptosis was regulated by ASL. Moreover, the depletion of Bax restored the inhibition of cell growth and reduced apoptosis initiated by ASL silencing. Together, the study demonstrated that ASL regulated HCC cell growth and apoptosis by modulating Bax signaling. Thus, the therapeutic targeting of ASL may offer options for HCC treatment.
关键词Apoptosis;ASL;Bax;HCC;Proliferation;
研究文章2018-10-15
Wei Zhou,Dagui Jiang,Jie Tian,Lingjuan Liu,Tiewei Lu,Xupei Huang,Huichao Sun
GATA4 is a particularly important cardiogenic transcription factor and serves as a potent driver of cardiogenesis. Recent progress in the field has made it clear that histone acetylation can influence gene expression through changing the structure of chromatin. Our previous research had revealed that hypo-acetylation could repress gata4 expression in cardiocytes, however the underlying mechanism by which this occurred was still unclear. To reveal the mechanism of histone acetylation involved in the regulation of gata4 transcription, we concentrated on P300, one of the important histone acetyltransferase associated with cardiogenesis. We found that P300 participated in gata4 expression through regulating histone acetylation in embryonic mouse hearts. RNAi-mediated downregulation of P300 modulated the global acetylation of H3 and the acetylation of H3K4, H3K9, and H3K27 in gata4 and Tbx5 promoters. Interestingly, there was an obvious inhibition of gata4 transcription, whereas Tbx5 was not influenced. Furthermore, SGC-CBP30, the selective inhibitor of the bromodomain in CBP/P300, downregulated gata4 transcription by repressing the acetylation of H3K4, H3K9, and H3K27 in the gata4 promoters. Taken together, our results identified that acetylation of H3K4, H3K9, and H3K27 mediated by P300 plays an important role in regulation of gata4 expression in cardiogenesis.
关键词gata4;P300;Acetylation;H3K4ac;H3K9ac;H3K27ac;