The RNA induced silencing complex (RISC) is a major eukaryotic cellular machinery which plays pivotal role in gene regulation. Argonaute-2 (Ago2) and Staphylococcal nuclease domain-containing protein 1 (SND1) are key functional components of this complex and have RNA binding ability and ribonuclease activity. Circulating Extracellular Vesicles (EVs) have high importance in cancer research and studies have shown that presence of Ago2 in EVs regulates gene expression in recipient cells. Secretion of miRNAs, mRNAs and Ago2 in extracellular vesicles or exosomes is a newly recognized mode of gene regulation and intercellular communication. However, there is no experimental evidence on possible presence of SND1 protein in EVs. This commentary discusses about the possible presence of SND1 in EVs along with Ago2 during circulation in blood.
第7卷, 第2期
切换刊期年期
2020
2
前瞻视角2020-05-15
Varsha D. Shiragannavar,Nirmala G. Sannappa Gowda,Prasanna K. Santhekadur
综述2020-01-08
Hasan Mollanoori,Yazdan Rahmati,Bita Hassani,Meysam Havasi Mehr,Shahram Teimourian
Duchenne muscular dystrophy is an X-linked recessive hereditary monogenic disorder caused by inability to produce dystrophin protein. In most patients, the expression of dystrophin lost due to disrupting mutations in open reading frame. Despite the efforts in a large number of different therapeutic approaches to date, the treatments available for DMD remain mitigative and supportive to improve the symptoms of the disease, rather than to be curative. The advent of CRISPR/Cas9 technology has revolutionized genome editing scope and considered as pioneer in effective genomic engineering. Deletions or excisions of intragenic DNA by CRISPR as well as a similar strategy with exon skipping at the DNA level induced by antisense oligonucleotides, are new and promising approaches in correcting DMD gene, which restore the expression of a truncated but functional dystrophin protein. Also, CRISPR/Cas9 technology can be used to treat DMD by removing duplicated exons, precise correction of causative mutation by HDR-based pathway and inducing the expression of compensatory proteins such as utrophin. In this study, we briefly explained the molecular genetics of DMD and a historical overview of DMD gene therapy. We in particular focused on CRISPR/Cas9-mediated therapeutic approaches that used to treat DMD.
关键词:CRISPR/Cas9;Duchenne muscular dystrophy;Genome editing;Therapeutic approaches;X-linked recessive;
综述2020-01-08
Dan Wang,Fengjiao Chen,Tao Zeng,Qingxia Tang,Bing Chen,Ling Chen,Yan Dong,Xiaosong Li
Thousands of long non-coding RNAs (lncRNAs) have been discovered in human genomes by gene chip, next-generation sequencing, and/or other methods in recent years, which represent a significant subset of the universal genes involved in a wide range of biological functions. An abnormal expression of lncRNAs is associated with the growth, invasion, and metastasis of various types of human cancers, including hepatocellular carcinoma (HCC), which is an aggressive, highly malignant, and invasive tumor, and a poor prognosis in China. With a more in-depth understanding of lncRNA research for HCC and the emergence of new molecular-targeted therapies, the diagnosis, treatment, and prognosis of HCC will be considerably improved. Therefore, this review is expected to provide recommendations and directions for future lncRNA research for HCC.
关键词:ceRNAs;HCC;LncRNAs;miRNAs;ncRNAs;snoRNAs;
前瞻视角2020-01-22
Anuj Gupta,Ankita Gupta,Larissa Boyd
Cystic Fibrosis (CF) is an autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene on chromosome 7. These abnormalities affect the chloride channels in the mucus producing epithelial cells. With these channels not working properly, water is unable to leave the cells to enter the mucus; thus, leading to sticky mucus which obstructs airways and ducts in the body.
研究文章2020-07-25
Yi Liu,Haijun Deng,Li Liang,Guiji Zhang,Jie Xia,Keyue Ding,Ni Tang,Kai Wang
Vesicle Protein Sorting 35 (VPS35) is a novel oncogene that promotes tumor growth through the PI3K/AKT signaling in hepatocellular carcinoma (HCC). However, the role of VPS35 in HCC metastasis and the underlying mechanisms remain largely unclear. In this study, we observed that overexpression of VPS35 enhanced hepatoma cell invasion and metastasis by inducing epithelial-mesenchymal transition (EMT) -related gene expression. Conversely, knockout of VPS35 significantly inhibited hepatoma cell migration and invasion. Furthermore, depletion of VPS35 decreased the lung metastasis of HCC in nude mice. By transcriptome analysis, we determined that VPS35 promoted HCC metastasis by activating the Wnt/non-canonical planar cell polarity (PCP) pathway. Mechanistically, VPS35 activated the PCP pathway by regulating membrane sorting and trafficking of Frizzled-2 (FZD2) and ROR1 in hepatoma cells. Collectively, our results indicate that VPS35 promotes HCC metastasis via enhancing the Wnt/PCP signaling, thus providing a potential prognostic marker and therapeutic target for HCC.
关键词:Epithelial emesenchymal transition;Hepatocellular carcinoma (HCC);Metastasis;Retromer complex;VPS35;Wnt/PCP signaling pathway;
REVIEW ARTICLE
综述2020-10-27
Liping Tan,Xuan Liu,Huan Dou,Yayi Hou
Mesenchymal stem cells (MSCs), multipotent stromal cells, have attracted extensive attention in the field of regenerative medicine and cell therapy due to the capacity of self-renewal, multilineage differentiation, and immune regulation. MSCs have different cellular effects in different diseases, and even have markedly different curative effects with different tissue sources, indicating the plasticity of MSCs. The phenotypes, secreted factors, and proliferative, migratory, differentiating, and immunomodulatory effects of MSCs depend on certain mediators present in their microenvironment. Understanding microenvironmental factors and their internal mechanisms in MSC responses may help in subsequent prediction and improvement of clinical benefits. This review highlighted the recent advances in MSC plasticity in the physiological and pathological microenvironment and multiple microenvironmental factors regulating MSC plasticity. It also highlighted some progress in the underlying molecular mechanisms of MSC remodeling in the microenvironment. It might provide references for the improvement in vitro culture of MSCs, clinical application, and in vivo induction.
关键词:Immune regulation;Mesenchymal stem cells;Microenvironment factors;Molecular mechanism;Multidirectional differentiation;Plasticity;
综述2020-12-01
Rama Rao Malla,P. Kiran
The tumor microenvironment (TME) is heterogeneous and contains a multiple cell population with surrounded immune cells, which plays a major role in regulating metastasis. The multifunctional pathways, Hedgehog (Hh), Wnt, Notch, and NF-κB, cross-regulates metastasis in breast cancer. This review presents substantial evidence for cross-regulation of TME components and signaling pathways, which makes breast TME more heterogeneous and complex, promoting breast cancer progression and metastasis as a highly aggressive form. We discoursed the importance of stromal and immune cells as well as their crosstalk in bridging the metastasis. We also discussed the role of Hh and Notch pathways in the intervention between breast cancer cells and macrophages to support TME; Notch signaling in the bidirectional communication between cancer cells and components of TME; Wnt signal pathway in controlling the factors responsible for EMT and NF-κB pathway in the regulation of genes controlling the inflammatory response. We also present the role of exosomes and their miRNAs in the cross-regulation of TME cells as well as pathways in the reprogramming of breast TME to support metastasis. Finally, we examined and discussed the targeted small molecule inhibitors and natural compounds targeting developmental pathways and proposed small molecule natural compounds as potential therapeutics of TME based on the multitargeting ability. In conclusion, the understanding of the molecular basis of the cross-regulation of TME pathways and their inhibitors helps identify molecular targets for rational drug discovery to treat breast cancers.
关键词:Breast cancer;Cross-regulation;Hedgehog;NF-κB;Notch;Tumor microenvironment;Wnt;
综述2020-12-02
Bei Wang,Wen Xu,Chengyu Hu,Kai Liu,Jinlan Chen,Chong Guo,Chengfu Yuan
The frequency of human suffering from cancer is increasing annually across the globe. This has fueled numerous investigations aimed at the prevention and cure of various cancers. Long non-coding RNA (lncRNA) are known to play a crucial role in cancer. For instance, cancer susceptibility candidate 11 (CASC11), as one of the long non-coding RNAs, has been reported to be overexpressed in various tumors. This review elucidates the mechanism by which lncRNA CASC11 regulates tumors' biological processes and affirms its value as a therapeutic target for tumors. Through systematic analysis and review of relevant articles in PubMed, we revealed the pathophysiological mechanism of CASC11 on the tumor by regulating the biological processes of tumor such as proliferation, autophagy, apoptosis, thereby promoting tumor metastasis. We also revealed the regulatory pathways of CASC11 in different tumors, for instance by acting on a variety of microRNAs, oncogenic proteins, carcinogens, and transcription factors. Consequently, CASC11 regulates cancer proliferation, apoptosis, and invasion by altering the WNT/β-catenin signaling pathway and epithelialemesenchymal transition (EMT). Furthermore, CASC11 expression has a high pertinence with clinical prognosis, suggesting that it is a potential marker for malignant tumors or a clinical adjuvant therapy in the future.
关键词:CASC11;Long non-coding RNA;malignant tumors;microRNA;Therapeutic targets;
综述2020-09-29
Liyuan Wang,Xiaoguang Chen,Chunhong Yan
Ferroptosis, a new form of non-apoptotic, regulated cell death characterized by iron dependency and lipid peroxidation, is involved in many pathological conditions such as neurodegenerative diseases, heart ischemia/reperfusion injury, acute renal failure, and cancer. While metabolic dysfunctions can lead to excessive lipid peroxidation culminating in ferroptotic cell death, glutathione peroxidase 4 (GPX4) resides in the center of a network that functions to prevent lipid hydroperoxides from accumulation, thereby suppressing ferroptosis. Indeed, RSL3 and other small-molecule GPX4 inhibitors can induce ferroptosis in not only cultured cancer cells but also tumor xenografts implanted in mice. Similarly, erastin and other system Xc- inhibitors can deplete intracellular glutathione required for GPX4 function, leading to lipid peroxidation and ferroptosis. As therapy-resistant cancer cells are sensitive to GPX4-targeted therapeutic regimens, the agents capable of inducing ferroptosis hold great promises to improve current cancer therapy. This review will outline the molecular basis of ferroptosis, but focus on the strategies and the agents developed in recent years for therapeutic induction of ferroptosis. The potentials of these ferroptosis-inducing agents, which include system Xc- inhibitors, GPX4 inhibitors, and iron-based nanoparticles, in cancer therapy will be subsequently discussed.
关键词:Cancer therapy;Erastin;Ferroptosis;GPX4;Lipid peroxidation;Nanomedicine;RSL3;System Xc-;
综述2020-12-04
Feifei Pu,Fengxia Chen,Zhicai Zhang,Deyao Shi,Binlong Zhong,Xiao Lv,Andrew Blake Tucker,Jiaming Fan,Alexander J. Li,Kevin Qin,Daniel Hu,Connie Chen,Hao Wang,Fang He,Na Ni,Linjuan Huang,Qing Liu,William Wagstaff,Hue H. Luu,Rex C. Haydon,Le Shen,Tong-Chuan He,Jianxiang Liu,Zengwu Shao
The treatment of cancer mainly involves surgical excision supplemented by radiotherapy and chemotherapy. Chemotherapy drugs act by interfering with tumor growth and inducing the death of cancer cells. Anti-tumor drugs were developed to induce apoptosis, but some patient's show apoptosis escape and chemotherapy resistance. Therefore, other forms of cell death that can overcome the resistance of tumor cells are important in the context of cancer treatment. Ferroptosis is a newly discovered iron-dependent, non-apoptotic type of cell death that is highly negatively correlated with cancer development. Ferroptosis is mainly caused by the abnormal increase in iron-dependent lipid reactive oxygen species and the imbalance of redox homeostasis. This review summarizes the progression and regulatory mechanism of ferroptosis in cancer and discusses its possible clinical applications in cancer diagnosis and treatment.
关键词:Cancer;Cancer therapy;Clinical application;Ferroptosis;Lipid peroxidation;Pathogenesis;
综述2020-12-01
Duguang Li,Xiaoxiao Fan,Yirun Li,Jing Yang,Hui Lin
Hepatocellular carcinoma (HCC) is among the most aggressive and lethal diseases with poor prognosis, worldwide. However, the mechanisms underlying HCC have not been comprehensively elucidated. With the recent application of high-throughput sequencing techniques, a diverse catalogue of differentially expressed long non-coding RNAs (lncRNA) in cancer have been shown to participate in HCC. Rather than being "transcriptional noise," they are emerging as important regulators of many biological processes, including chromatin remodelling, transcription, alternative splicing, translational and post-translational modification. Moreover, lncRNAs have dual effects in the development and progression of HCC, including oncogenic and tumour-suppressive roles. Collectively, recently data point to lncRNAs as novel diagnostic and prognostic biomarkers with satisfactory sensitivity and specificity, as well as being therapeutic targets for HCC patients. In this review, we highlight recent progress of the molecular patterns of lncRNAs and discuss their potential clinical application in human HCC.
关键词:Biomarker;Hepatocellular carcinoma;LncRNA;Molecular mechanism;Therapy;
综述2020-11-10
Haiming Wang,Zifan Liu,Junjie Shao,Min Jiang,Xuechun Lu,Lejian Lin,Lin Wang,Qiang Xu,Haomin Zhang,Xin Li,Jingjing Zhou,Yundai Chen,Ran Zhang
The development of premature coronary artery disease (PCAD) is dependent on both genetic predisposition and traditional risk factors. Strategies for unraveling the genetic basis of PCAD have evolved with the advent of modern technologies. Genome-wide association studies (GWASs) have identified a considerable number of common genetic variants that are associated with PCAD. Most of these genetic variants are attributable to lipid and blood pressure-related single-nucleotide polymorphisms (SNPs). The genetic variants that predispose individuals to developing PCAD may depend on race and ethnicity. Some characteristic genetic variants have been identified in Chinese populations. Although translating this genetic knowledge into clinical applications is still challenging, these genetic variants can be used for CAD phenotype identification, genetic prediction and therapy. In this article we will provide a comprehensive review of genetic variants detected by GWASs that are predicted to contribute to the development of PCAD. We will highlight recent findings regarding CAD-related genetic variants in Chinese populations and discuss the potential clinical utility of genetic variants for preventing and managing PCAD.
关键词:Genetic clinical applications;Genetic variants;Genome-wide association studies;Premature coronary artery disease;Single-nucleotide polymorphisms;
综述2020-08-08
Yixiao Pan,Lu Deng,Hai Wang,Kang He,Qiang Xia
Histidine-rich glycoprotein (HRGP) is a relatively less known glycoprotein, but it is abundant in plasma with a multidomain structure, which allows it to interact with many ligands and regulate various biological processes. HRGP ligands includes heme, Zn2+, thrombospondin, plasmin/plasminogen, heparin/heparan sulfate, fibrinogen, tropomyosin, IgG, FcgR, C1q. In many conditions, the histidine-rich region of HRGP strengthens ligand binding following interaction with Zn2+ or exposure to low pH, such as sites of tissue injury or tumor growth. The multidomain structure and diverse ligand binding attributes of HRGP indicates that it can act as an extracellular adaptor protein, connecting with different ligands, especially on cell surfaces. Also, HRGP can selectively target IgG, which blocks the production of soluble immune complexes. The most common cell surface ligand of HRGP is heparan sulfate proteoglycan, and the interaction is also potentiated by elevated Zn2+ concentration and low pH. Recent reports have shown that HRGP can modulate macrophage polarization and possibly regulate other physiological processes such as angiogenesis, anti-tumor immune response, fibrinolysis and coagulation, soluble immune complex clearance and phagocytosis of apoptotic/necrosis cells. In addition, it has also been reported that HRGP has antibacterial and anti-HIV infection effects and may be used as a novel clinical biomarker accordingly. This review outlines the molecular, structural and biological properties of HRGP as well as presenting an update on the function of HRGP in various physiological processes.
关键词:Angiogenesis;Histidine-rich glycoprotein;Macrophage polarization;Thrombospondin;Tumor;
FULL LENGTH ARTICLE
研究文章2020-05-21
Min Wu,Maolin Liao,Rongfeng Huang,Chunxiu Chen,Tian Tian,Hongying Wang,Jiayu Li,Jibin Li,Yuxiang Sun,Chaodong Wu,Qifu Li,Xiaoqiu Xiao
Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) share several common pathophysiological features. Rare variants of triggering receptor expressed on myeloid cells 2 (TREM2) increase the risk of developing AD, suggesting the involvement of TREM2 and innate immunity in AD development. It is still unknown whether TREM2 is related to cognitive impairment in T2DM. Here, we investigated the effects of the hippocampal overexpression of TREM2 on cognitive in long-term high-fat diet (HFD) -fed mice. Male C57BL/6J mice were maintained on HFD for 50 weeks. TREM2 was overexpressed in the hippocampus 36 weeks after HFD feeding using adeno-associated virus vector (AAV) -mediated gene delivery. The results showed that the HFD feeding induced rapid and persistent weight gain, glucose intolerance and significant impairments in learning and memory. Compared with AAV-con, AAV-TREM2 significantly ameliorated cognitive impairment without altering body weight and glucose homeostasis in HFD mice. The overexpression of TREM2 upregulated the synaptic proteins spinophilin, PSD95 and synaptophysin, suggesting the improvement in synaptic transmission. Dendritic complexity and spine density in the CA1 region were rescued after TREM2 overexpression. Furthermore, TREM2 markedly increased the number ofiba-1/Arg-1-positive microglia in the hippocampus, suppressed neuroinflammation and microglial activation. In sum, hippocampal TREM2 plays an important role in improving HFD-induced cognitive dysfunction and promoting microglial polarization towards the M2 anti-inflammatory phenotype. Our study also suggests that TREM2 might be a novel target for the intervention of obesity/diabetes-associated cognitive decline.
关键词:Diabetes;Microglial polarization;Neurodegeneration;Neuroinflammation;Obesity;TREM2;
研究文章2020-08-21
Chaoqi Zhang,Feng Wang,Nan Sun,Zhen Zhang,Guochao Zhang,Zhihui Zhang,Yuejun Luo,Yun Che,Hong Cheng,Jiagen Li,Jie He
Studies on immune checkpoint inhibitors targeting B7-CD28 family pathways in esophageal squamous cell carcinoma (ESCC) have shown promising results. However, a comprehensive understanding of B7-CD28 family members in ESCC is still limited. This study aimed to construct a novel B7-CD28 family-based prognosis system to predict survival in patients with ESCC. We collected 179 cases from our previously published microarray data and 86 cases with qPCR data. Specifically, 119 microarray data (GSE53624) were used as a training set, whereas the remaining 60 microarray data (GSE53622), all 179 microarray data (GSE53625) and an independent cohort with 86 qPCR data were used for validation. The underlying mechanism and immune landscape of the system were also explored using bioinformatics and immunofluorescence. We examined 13 well-defined B7-CD28 family members and identified 2 genes (ICSOLG and HHLA2) with the greatest prognostic value. A system based on the combination HHLA2 and ICOSLG (B7-CD28 signature) was constructed to distinguish patients as high-or low-risk of an unfavorable outcome, which was further confirmed as an independent prognostic factor. As expected, the signature was well validated in the entire cohort and in the independent cohort, as well as in different clinical subgroups. The signature was found to be closely related to immune-specific biological processes and pathways. Additionally, high-risk group samples demonstrated high infiltration of Tregs and fibroblasts and distinctive immune checkpoint panels. Collectively, we built the first, practical B7-CD28 signature for ESCC that could independently identify high-risk patients. Such information may help inform immunotherapy-based treatment decisions for patients with ESCC.
关键词:Esophageal cancer;HHLA2;ICOSLG;Immune checkpoint;Immunotherapy;
研究文章2020-08-31
Min Xu,Yu-Meng Wang,Wan-Qing Li,Cheng-Long Huang,Jun Li,Wen-Hua Xie,Hong-Xiang Zeng,Lin-Fen Tao,Xi Li
Obesity-induced inflammation, characterized by augmented infiltration and altered balance of macrophages, is a critical component of systemic insulin resistance. Chemokine-chemokine receptor system plays a vital role in the macrophages accumulation. CC-Chemokine Receptor-like 2 (Ccrl2) is one of the receptors of Chemerin, which is a member of atypical chemokine receptors (ACKR) family, reported taking part in host immune responses and inflammation-related conditions. In our study, we found ccrl2 expression significantly elevated in visceral adipose tissue (VAT) of high fat diet (HFD) induced obese mice and ob/ob mice. Systemic deletion of Ccrl2 gene aggravated HFD induced obesity and insulin resistance and ccrl2-/- mice showed aggravated VAT inflammation and increased M1/M2 macrophages ratio, which is due to the increase of macrophages chemotaxis in Ccrl2 deficiency mice. Cumulatively, these results indicate that Ccrl2 has a critical function in obesity and obesity-induced insulin resistance via mediating macrophages chemotaxis.
关键词:Ccrl2;Inflammation;Insulin resistance;Macrophages;Obesity;
研究文章2020-07-17
Xiujin Shen,Chunhua Weng,Yucheng Wang,Cuili Wang,Shi Feng,Xiayu Li,Heng Li,Hong Jiang,Haibing Wang,Jianghua Chen
Podocyte injury is an important cause of proteinuria. Angiopoietin-like protein 4 (Angptl4) is a secreted glycoprotein and has a role in proteinuria. However, the exact role of Angptl4 in podocyte injury and its upstream regulators has not been clarified. In this study, we used lipopolysaccharide (LPS) -induced mice and cultured podocytes as podocyte injury models. Our results indicated that LPS increased the expression of podocyte Angptl4 in vivo and in vitro. Furthermore, we showed that Angptl4 overexpression deteriorated LPS-induced podocyte injury by inducing podocyte cytoskeleton rearrangement, reducing the expression of synaptopodin while Angptl4 knockdown alleviated LPS-induced podocyte injury. In addition, we found that inhibitors and siRNA targeting TLR4/MyD88/NF-κB signaling inhibited the upregulation of Angptl4 in LPS-induced podocytes. Moreover, inhibitors and siRNA targeting calcineurin/NFAT signaling also relieved LPS-induced Angptl4 expression and podocyte injury in vivo and in vitro. Taken together, our study has elucidated that both of the TLR4/MyD88/NF-κB and calcineurin/NFAT signaling mediate the upregulation of Angptl4 in LPS-induced podocytes, which has important implications for further understanding the molecular mechanism of LPS-induced podocyte injury.
关键词:Angiopoietin-like protein 4;Calcineurin/NFAT;LPS;Podocyte injury;TLR4/MyD88/NF-κB;
研究文章2020-08-10
Yun Bai,Xiaoshan Gong,Rui Dong,Zhen Cao,Ce Dou,Chuan Liu,Jianmei Li,Fei Kang,Jingjin Dai,Chunrong Zhao,Zhansong Tian,Jiulin Tan,Qijie Dai,Shiwu Dong
Endochondral bone formation is an important route for bone repair. Although emerging evidence has revealed the functions of long non-coding RNAs (lncRNAs) in bone and cartilage development, the effect of lncRNAs in endochondral bone repair is still largely unknown. Here, we identified a lncRNA, named Hypertrophic Chondrocyte Angiogenesisrelated lncRNA (HCAR), and proved it to promote the endochondral bone repair by upregulating the expression of matrix metallopeptidase 13 (Mmp13) and vascular endothelial growth factor a (Vegfa) in hypertrophic chondrocytes. Lnc-HCAR knockdown in hypertrophic chondrocytes restrained the cartilage matrix remodeling and decrease the CD31hi Emcnhi vessels number in a bone repair model. Mechanistically, we proved that lnc-HCAR was mainly enriched in the cytoplasm using fluorescence in situ hybridization (FISH) assay, and it acted as a molecular sponge for miR-15b-5p. Further, in hypertrophic chondrocytes, lnc-HCAR competitively bound to miR-15b-5p to increase Vegfa and Mmp13 expression. Our results proved that lncRNA is deeply involved in endochondral bone repair, which will provide a new theoretical basis for future strategies for promoting fracture healing.
关键词:Bone marrow mesenchymal stem cells;Bone repair;Chondrocyte;Enchondral bone repair;Long non coding RNA;
研究文章2020-08-08
Chunmei Yang,Lulu Zhang,Huakun Huang,Xiaohui Yuan,Ping Zhang,Caihong Ye,Mengqi Wei,Yanran Huang,Xiaoji Luo,Jinyong Luo
Although there are many therapeutic strategies such as surgery and chemotherapy, the prognosis of osteosarcoma (OS) is still far from being satisfactory. It is urgent to develop more effective, tolerable and safe drugs for the treatment of OS. In the present study, we investigated the anti-OS activity of Alantolactone (ALT), a natural eucalyptone sesquiterpene lactone mainly exists in Inula helenium, and probed the possible mechanism involved. We demonstrated that ALT significantly inhibited cell proliferation of various human OS cell lines while had relative lower cytotoxicity against normal cells. Then, we validated that ALT reduced migration, decreased invasion possibly through reversing epithelial mesenchymal transition (EMT) process and suppressing Matrix metalloproteinases (MMPs). Moreover, we confirmed that ALT promoted apoptosis and arrested cell cycle at G2/M phase of human OS cells in vitro. In addition, we confirmed that ALT restrained tumor growth and metastasis of OS 143 cells in a xenograft model in vivo. Mechanistically, ALT inhibited the activity of Wnt/β-catenin and p38, ERK1/2 and JNK Mitogen Activated Protein Kinases (MAPKs) signal pathway. Notably, the combination of ALT and Wnt/β-catenin inhibitor, as well as the combination of ALT and MAPKs inhibitors resulted in a synergistically effect on inhibiting the proliferation, migration and invasion of OS cells. Collectively, our results validate the ALT may inhibit proliferation, metastasis and promotes apoptosis of human OS cells possibly through suppressing Wnt/β-Catenin and MAPKs signaling pathways.
关键词:Alantolactone;Erk1/2;JNK;Mitogen activated protein kinases;Osteosarcoma;p38;Wnt/β-catenin;
研究文章2020-08-21
Ruigong Zhu,Xian Ji,Xuan Wu,Jiajing Chen,Xuesong Li,Hong Jiang,Haiping Fu,Hui Wang,Zhe Lin,Xin Tang,Shixiu Sun,Qingguo Li,Bingjian Wang,Hongshan Chen
Cellular senescence is closely associated with age-related diseases. Ovarian aging, a special type of organ senescence, is the pathophysiological foundation of the diseases of the reproductive system. It is characterized by the loss of integrity of the surface epithelium and a gradual decrease in the number of human ovarian surface epithelial cells (HOSEpiCs). To contribute to the research on delaying ovarian aging, we aimed to investigate the novel epigenetic mechanism of melatonin in protecting HOSEpiCs. We discovered that melatonin has antagonistic effects against the oncogene-induced senescence (OIS) of HOSEpiCs. Mechanistically, the oncogene Ras decreased the expression of YTHDF2, which is the reader of RNA-m6A, by stimulating the generation of reactive oxygen species (ROS). Moreover, we found that the suppression of YTHDF2 increased the expression of MAP2K4 and MAP4K4 by enhancing the stability of the transcription of their mRNAs, thereby upregulating the expression of the senescence-associated secretory phenotype (SASP) through the activation of the MAP2K4 and MAP4K4-dependent nuclear factor-κB (NF-κB) signaling pathways. We further determined that melatonin has antagonistic effects against the OIS of HOSEpiCs by inhibiting the ROS-YTHDF2-MAPK-NF-κB pathway. These findings provide key insights into the potential avenues for preventing and treating ovarian aging.
关键词:Gene expression;Inflammation;Melatonin;Senescence;YTHDF2;
研究文章2020-06-21
Hao Yuan,Xuelian Wu,Xiaomin Wang,Chengfu Yuan
Astragalus and Angelica decoction (A&A) has been clinically used as a classical traditional Chinese medicine (TCM) formula in China for many years for the treatment of kidney diseases, especially renal interstitial fibrosis (RIF). However, the mechanisms underlying the therapeutic effects of A&A on RIF remains poorly understood. In the present study, systematic network pharmacology and effective experimental verification were utilized for the first time to elucidate the pharmacological efficacy and potential mechanism. The outcomes indicated that 22 active components and 87 target genes of A&A were identified and crossreferenced with RIF-associated genes, contributing to confirmation of 74 target genes of A&A for RIF. Pathway and functional enrichment analyses revealed that A&A had substantial effects on MAPK, PI3K-Akt and TNF signaling pathways. In addition, seven core targets with relatively higher betweenness and degree were identified in the constructed Chinese medicine material-chemical component-target-signal pathway network. Moreover, we verified the potential therapeutic effect of A&A in vivo (using a mouse model of RIF), confirming that A&A could effectively protect the kidney by regulating these target genes. The therapeutic effect of A&A on RIF could be attributed to its role in regulating the cell cycle, limiting the apoptosis, and inhibiting the inflammation.
关键词:Active components;Astragalus and angelica decoction;Network pharmacology;Renal interstitial fibrosis;Target gene;
研究文章2020-12-23
Shenglong Li,Wang Wang,Tingting Li,Xiaojian Han,Chao Hu,Yingming Wang,Meiying Shen,Li Du,Yaru Nai,Jianwei Wang,Aishun Jin
The pandemic of COVID-19 caused by SARS-CoV-2 has made serious threats to the public health. Antibodies have been considered as promising therapeutics for the prevention and treatment of pathogens. So far, effectors that can influence the sustainability of SARS-CoV-2 specific antibodies in COVID-19 patients are still unclear. In this paper, we attempted to find potential key factors correlated with SARS-CoV-2 specific antibodies. Transcriptional analysis with the peripheral blood mononuclear cells (PBMCs) revealed proportional changes of immune cell subsets in COVID-19 convalescent patients, including a substantial decrease of monocytes and evident increase of dendritic cells (DCs). Moreover, we found that the gene expressions of chemokines associated with monocyte/macrophage were significantly upregulated during the COVID-19 recovery phase. Most importantly, we found a set of 27 immune genes corresponding to a comparatively lower amount of SARS-CoV-2 specific antibodies, and identified two hub genes, IL1b and IL6, the protein expressions of which exhibited negative correlation with the immunoglobulin G (IgG) levels in COVID-19 convalescent sera. In addition, we found that high expressions of these 2 hub genes during the convalescent stage were negatively associated with the plasma cell marker CD138. Our study presented two key inflammatory factors correlated to the low level of SARS-CoV-2 specific antibodies, which indicated the potential regulatory process of plasmatic antibodies levels in some COVID-19 convalescent patients.
关键词:Antibodies;Convalescent stage;COVID-19;Cytokines;IL1b and IL6;