Cystine/glutamate antiporter solute carrier family 7 member 11 (SLC7A11; also known as xCT) plays a key role in antioxidant defense by mediating cystine uptake, promoting glutathione synthesis, and maintaining cell survival under oxidative stress conditions. Recent studies showed that, to prevent toxic buildup of highly insoluble cystine inside cells, cancer cells with high expression of SLC7A11 (SLC7A11high) are forced to quickly reduce cystine to more soluble cysteine, which requires substantial NADPH supply from the glucose-pentose phosphate pathway (PPP) route, thereby inducing glucose-and PPP-dependency in SLC7A11high cancer cells. Limiting glucose supply to SLC7A11high cancer cells results in significant NADPH "debt", redox "bankruptcy", and subsequent cell death. This review summarizes our current understanding of NADPH-generating and-consuming pathways, discusses the opposing role of SLC7A11 in protecting cells from oxidative stresseinduced cell death such as ferroptosis but promoting glucose starvationeinduced cell death, and proposes the concept that SLC7A11-mediated cystine uptake acts as a double-edged sword in cellular redox regulation. A detailed understanding of SLC7A11 in redox biology may identify metabolic vulnerabilities in SLC7A11high cancer for therapeutic targeting.
第8卷, 第6期
切换刊期年期
2020
6
综述2020-11-25
Xiaoguang Liu,Yilei Zhang,Li Zhuang,Kellen Olszewski,Boyi Gan
关键词:Cysteine;Cystine;NADPH;Pentose phosphate pathway;SLC7A11;xCT;
综述2020-07-31
Beijian Zhang,Hao Jiang,Zhen Dong,Aijun Sun,Junbo Ge
N6-methyladenosine (m6A) RNA methylation is an emerging area of epigenetics, which is a reversible and dynamic modification mediating by ‘writers’ (methylase, adding methyl groups, METTL3, METTL14, and WTAP), ‘erasers’ (demethylase, deleting methyl groups, FTO and ALKBH5), and ‘readers’ (YTHDF1-3, YTHDC1 and YTHDC2). Recent studies in human, animal models and cell levels have disclosed a critical role of m6A modification in regulating the homeostasis of metabolic processes and cardiovascular function. Evidence from these studies identify m6A as a candidate of biomarker and therapeutic target for metabolic abnormality and cardiovascular diseases (CVD). Comprehensive understanding of the complexity of m6A regulation in metabolic diseases and CVD will be helpful for us to understand the pathogenesis of CVD. In this review, we discuss the regulatory role of m6A in metabolic abnormality and CVD. We will emphasize the clinical relevance of m6A dysregulation in CVD.
关键词:Cardiovascular disease;FTO;Heart failure;Metabolic syndrome;METTL3;Myocardial infarction;N6-methyladenosine;RNA epigenetics;
综述2020-10-23
Yichen Liu,Qiong Zhao,Tao Xi,Lufeng Zheng,Xiaoman Li
Metastasis, is a development of secondary tumor growths at a distance from the primary site, and closely related to poor prognosis and mortality. However, there is still no effective treatment for metastatic cancer. Therefore, there is an urgent need to find an effective therapy for cancer metastasis. Plenty of evidence indicates that miR-9 can function as a promoter or suppressor in cancer metastasis and coordinate multistep of metastatic process. In this review, we summarize the different roles of miR-9 with the corresponding molecular mechanisms in metastasis of twelve common cancers and the multiple mechanisms underlying miR-9-mediated regulation of metastasis, benefiting the further research of miR-9 and metastasis, and hoping to bridge it with clinical applications.
关键词:Cancer;Metastasis;MiR-9;Oncogene;Tumor suppressor;
综述2020-12-18
Hui Nie,Zhujun Liao,Yutong Wang,Jianhua Zhou,Xiaoyun He,Chunlin Ou
Metastasis is a major challenge in the treatment of cancer. Exosomes are a class of small extracellular vesicles (EVs) that play critical roles in several human diseases, especially cancer, by transferring information (e.g., DNA, RNA, and protein) via cell-to-cell communication. Numerous recent studies have shown that exosomal long non-coding RNAs (lncRNAs) play crucial regulatory roles in cancer metastasis in the tumor microenvironment by altering the expression of several key signaling pathways and molecules. Due to their specificity and sensitivity, exosomal lncRNAs have potential as novel tumor markers and therapeutic targets in the treatment of cancer metastasis. In this review, we aim to summarize the roles of exosomal lncRNAs in cancer metastasis, the mechanisms underlying their roles, and their potential clinical applications.
关键词:Cancer metastasis;Exosomes;Extracellular vesicles;Long noncoding RNA;Therapy;Tumor marker;
综述2020-10-13
Xingxing Huang,Ting Pan,Lili Yan,Ting Jin,Ruonan Zhang,Bi Chen,Jiao Feng,Ting Duan,Yu Xiang,Mingming Zhang,Xiaying Chen,Zuyi Yang,Wenzheng Zhang,Xia Ding,Tian Xie,Xinbing Sui
Accumulating evidence suggests that chronic inflammation may play a critical role in various malignancies, including bladder cancer. This hypothesis stems in part from inflammatory cells observed in the urethral microenvironment. Chronic inflammation may drive neoplastic transformation and the progression of bladder cancer by activating a series of inflammatory molecules and signals. Recently, it has been shown that the microbiome also plays an important role in the development and progression of bladder cancer, which can be mediated through the stimulation of chronic inflammation. In effect, the urinary microbiome can play a role in establishing the inflammatory urethral microenvironment that may facilitate the development and progression of bladder cancer. In other words, chronic inflammation caused by the urinary microbiome may promote the initiation and progression of bladder cancer. Here, we provide a detailed and comprehensive account of the link between chronic inflammation, the microbiome and bladder cancer. Finally, we highlight that targeting the urinary microbiome might enable the development of strategies for bladder cancer prevention and personalized treatment.
关键词:Bladder cancer;Carcinogenesis;Inflammatory microenvironment;Pathogenesis;
综述2020-12-30
Mariaelena Valentino,Elisabetta Dejana,Matteo Malinverno
The programmed cell death 10 (PDCD10) gene was originally identified as an apoptosis-related gene, although it is now usually known as CCM3, as the third causative gene of cerebral cavernous malformation (CCM). CCM is a neurovascular disease that is characterized by vascular malformations and is associated with headaches, seizures, focal neurological deficits, and cerebral hemorrhage. The PDCD10/CCM3 protein has multiple subcellular localizations and interacts with several multi-protein complexes and signaling pathways. Thus PDCD10/CCM3 governs many cellular functions, which include cell-to-cell junctions and cytoskeleton organization, cell proliferation and apoptosis, and exocytosis and angiogenesis. Given its central role in the maintenance of homeostasis of the cell, dysregulation of PDCD10/CCM3 can result in a wide range of altered cell functions. This can lead to severe diseases, including CCM, cognitive disability, and several types of cancers. Here, we review the multifaceted roles of PDCD10/CCM3 in physiology and pathology, with a focus on its functions beyond CCM.
关键词:Cancer;Cell signaling;Cell-cycle;Neurovascular unit;PDCD10/CCM3;
研究文章2020-09-01
Yi Pan,Qingshang Li,Zhijun Cao,Shuliang Zhao
Gastric cancer (GC) is one of the most common malignancies, with an everincreasing incidence and high mortality rate. Chromobox4 (CBX4), also named hPC2, is a small ubiquitin-related modifier (SUMO) E3 ligase. Previous studies have found that high CBX4 expression is associated with tumor size, pathologic differentiation and decreased patient survival in hepatocellular carcinoma (HCC). However, the expression and prognostic value of CBX4 in GC have not been clarified. In our study, ONCOMINE, UALCAN, Kaplan-Meier Plotter, cBioPortal, DAVID 6.8 and TIMER were utilized. RT-PCR, immunohistochemistry (IHC), Western blot, CCK-8 assay, cell apoptosis assay, cell cycle assay were used to further verify in GC tissue samples or cell line. The transcriptional and protein level of CBX4 in GC tissues was found significantly elevated and a significant association between the expression of CBX4 and clinicopathological parameters was found in GC patients. Low expression of CBX4 in GC patients were correlated with a significantly improved prognosis. The functions of CBX4 are primarily related to the stem cell pluripotency signaling pathway, Hippo signaling pathway, HTLV-I infection, Notch signaling pathway, and N-glycan biosynthesis. Our results may provide novel insights for the selection of therapeutic targets and prognostic biomarkers for GC.
关键词:Bioinformatics analysis;Chromobox4 (CBX4);Gastric cancer;Prognostic biomarker;Therapeutic target;
研究文章2020-08-25
Chao Li,Shang-Ze Li,Xi-Cheng Huang,Jie Chen,Wenbin Liu,Xiao-Dong Zhang,Xue-Min Song,Run-Lei Du
Protein tyrosine phosphatase non-receptor type 18 (PTPN18) is often highly expressed in colorectal cancer (CRC), but its role in this disease remains unclear. We demonstrated that PTPN18 overexpression promotes growth and tumorigenesis in CRC cells and that PTPN18 deficiency yields the opposite results in vitro. Moreover, a xenograft assay showed that PTPN18 deficiency significantly inhibited tumorigenesis in vivo.PTPN18 activated the MYC signaling pathway and enhanced CDK4 expression, which is tightly associated with the cell cycle and proliferation in cancer cells. Finally, we found that MYC interacted with PTPN18 and increased the protein level of MYC. In conclusion, our results suggest that PTPN18 promotes CRC development by stabilizing the MYC protein level, which in turn activates the MYC-CDK4 axis. Thus, PTPN18 could be a novel therapeutic target in the future.
关键词:CDK4;Colorectal cancer;MYC;Proliferation;PTPN18;
研究文章2020-08-20
Waqar Ahmad,Paul R. Ebert
A decrease in energy metabolism is associated with Alzheimer's disease (AD), but it is not known whether the observed decrease exacerbates or protects against the disease. The importance of energy metabolism in AD is reinforced by the observation that variants of dihydrolipoamide dehydrogenase (DLD), is genetically linked to late-onset AD. To determine whether DLD is a suitable therapeutic target, we suppressed the dld-1 gene in Caenorhabditis elegans that express human Ab peptide in either muscles or neurons. Suppression of the dld-1 gene resulted in significant restoration of vitality and function that had been degraded by Ab pathology. This included protection of neurons and muscles cells. The observed decrease in proteotoxicity was associated with a decrease in the formation of toxic oligomers rather than a decrease in the abundance of the Ab peptide. The mitochondrial uncoupler, carbonyl cyanide 4- (trifluoromethoxy) phenylhydrazone (FCCP), which like dld-1 gene expression inhibits ATP synthesis, had no significant effect on Ab toxicity. Proteomics data analysis revealed that beneficial effects after dld-1 suppression could be due to change in energy metabolism and activation of the pathways associated with proteasomal degradation, improved cell signaling and longevity. Thus, some features unique to dld-1 gene suppression are responsible for the therapeutic benefit. By direct genetic intervention, we have shown that acute inhibition of dld-1 gene function may be therapeutically beneficial. This result supports the hypothesis that lowering energy metabolism protects against Ab pathogenicity and that DLD warrants further investigation as a therapeutic target.
关键词:Alzheimer';s disease;Amyloid beta;C. elegans;Dihydrolipoamide dehydrogenase (dld);Energy metabolism;Neurodegeneration;Proteomics;
研究文章2020-11-21
Jian Chen,Biao Luo,Bi-Rou Zhong,Kun-Yi Li,Qi-Xin Wen,Li Song,Xiao-Jiao Xiang,Gui-Feng Zhou,Li-Tian Hu,Xiao-Juan Deng,Yuan-Lin Ma,Guo-Jun Chen
Sulfuretin is a flavonoid that protects cell from damage induced by reactive oxygen species and inflammation. In this study, we investigated the role of sulfuretin in the processing of amyloid precursor protein (APP), in association with the two catalytic enzymes the a-secretase a disintegrin and metalloproteinase (ADAM10), and the beta-site APP cleaving enzyme 1 (BACE1) that play important roles in the generation of b amyloid protein (Ab) in Alzheimer's disease (AD). We found that sulfuretin increased the levels of the immature but not the mature form of ADAM10 protein. The enhanced ADAM10 transcription by sulfuretin was mediated by the nucleotides -444 to -300 in the promoter region, and was attenuated by silencing or mutation of transcription factor retinoid X receptor (RXR) and by GW6471, a specific inhibitor of peroxisome proliferator-activated receptor α (PPAR-α). We further found that sulfuretin preferentially increased protein levels of the immature form of APP (im-APP) but significantly reduced those of BACE1, sAPPb and β-CTF, whereas Aβ1-42 levels were slightly increased. Finally, the effect of sulfuretin on BACE1 and im-APP was selectively attenuated by the translation inhibitor cycloheximide and by lysosomal inhibitor chloroquine, respectively. Taken together, (1) RXR/PPAR-α signaling was involved in sulfuretin-mediated ADAM10 transcription. (2) Alteration of Ab protein level by sulfuretin was not consistent with that of ADAM10 and BACE1 protein levels, but was consistent with the elevated level ofim-APP protein, suggesting that im-APP, an isoform mainly localized to trans-Golgi network, plays an important role in Aβ generation.
关键词:Ab;ADAM10;BACE1;Immature APP;RXR/PPAR-α;Sulfuretin;Trans-Golgi network;
研究文章2020-12-17
Dongwei Fan,Daoyang Fan,Wanqiong Yuan
Osteoporosis, fracture, large-scale craniofacial defects and osteonecrosis are hot topics and are still underdiagnosed and undertreated in the clinic. It is urgent to understand the molecular mechanisms corresponding to the regulation of bone formation. CMTM3 (CKLF-like MARVEL transmembrane domain containing 3) connects the classic chemokine to the transmembrane 4 superfamily and plays an important role in intracellular vesicles transport, EGF receptor function maintenance and cancer development. However, its expression and function in bone remain unclear. In this paper, we found that the bone volume/total volume, trabecular number, trabecular thickness and bone surface area/bone volume of Cmtm3 KO mice increased significantly, and trabecular separation and trabecular pattern factor decreased in Cmtm3 KO mice compared with WT mice by microcomputed tomography. Moreover, the bone mineral content, bone mineral density, ultimate force and stiffness were also increased in Cmtm3 KO mice. Using in vitro analysis, we showed that CMTM3 expression decreases during the differentiation of hBMSCs to osteoblasts. Knockdown of CMTM3 promoted ALP and mineralization of hBMSCs and facilitated osteoblastic differentiation with increasing RUNX2 expression. However, overexpression of CMTM3 got the opposite results. These results proved that CMTM3 was essential for osteogenic differentiation. In addition, knockdown of CMTM3 enhanced p-Erk1/2, but had no significant effect on p-Akt or p-STAT3 in hBMSCs and MC3T3-E1 cells. Taken together, our results indicated that Erk1/2 and RUNX2 pathways mediated by CMTM3 were involved in the process of osteogenic differentiation, and CMTM3 might be a new potential target in the treatment of bone formation-related disease.
关键词:CMTM3;Erk1/2;hBMSCs;Osteoporosis;RUNX2;
研究文章2020-12-23
Qin Zhou,Hao Xu,Liang Yan,Liang Ye,Xinyuan Zhang,Bin Tan,Qin Yi,Jie Tian,Jing Zhu
Although it is widely accepted that human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are readily available, robustly reproducible, and physiologically appropriate human cells for clinical applications and research in the cardiovascular field, hiPSC-CMs cultured in vitro retain an immature metabolic phenotype that limits their application, and little is known about the underlying molecular mechanism controlling mitochondrial metabolic maturation during human induced pluripotent stem cells (hiPSCs) differentiation into cardiomyocytes. In this study, we found that peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) played an important role in inducing mitochondrial biogenesis and establishing oxidative phosphorylation (OXPHOS) during the cardiac differentiation of hiPSCs. Knocking down PGC-1a by siRNA impaired mitochondrial respiration, while upregulating PGC-1α by ZLN005 promoted mitochondrial biosynthesis and function by regulating the expression of downstream genes involved in mitochondrial dynamics and oxidative metabolism in hiPSCCMs. Furthermore, we found that estrogen-related receptor α (ERRα) was required for the induction of PGC-1a stimulatory effects in hiPSC-CMs. These findings provide key insights into the molecular control of mitochondrial metabolism during cardiac differentiation and may be used to generate more metabolically mature cardiomyocytes for application.
关键词:Cardiac differentiation;hiPSCs;Mitochondrial metabolism;PGC-1α;Maturation;
研究文章2020-04-30
Yanping Wang,Qiuyun Yang,Xuemei Chen,Wenjing Tang,Lina Zhou,Zhi Chen,Yunfei An,Zhiyong Zhang,Xuemei Tang,Xiaodong Zhao
Activated phosphoinositide 3-kinase d syndrome 1 (APDS1) is a primary immunodefi ciency disease caused by gain-of-function mutations in PIK3CD. Clinical features of autoimmune disease have been reported in patients with APDS1. In this study, we reported three patients with APDS1 presenting with systemic lupus erythematosus (SLE) phenotype. The clinical manifestations included recurrent respiratory tract infection, lymphoproliferation, Coombs-positive hemolytic anemia, decreased complement fractions, positive antinuclear antibodies, renal complications related to SLE associated diseases, which met the clinical spectrum of APDS1 and the classification criteria of SLE. The immunological phenotype included an inversion in the CD4: CD8 ratio, an increase in both non-circulating Tfh CD4+ memory T and circulating Tfh populations, a low level of recent thymic emigrant T cells, overexpression of CD57 on T cells, and a decrease in B cells with fewer antibody class switch recombination. These phenotypes detected in patients with APDS1 presenting with SLE were resemble that in patients with APDS1 presenting without SLE. Meanwhile, we described the effect of glucocorticoids and rapamycin therapy on patients with APDS1. The phosphorylation of S6 at Ser235/236 was inhibited in patients with APDS1 who underwent glucocorticoids therapy, including two who presented with SLE phenotype. The phosphorylation of AKT at Ser473 and phosphorylation of S6 at Ser235/236 were inhibited in other patients with APDS1 who underwent rapamycin therapy. Here, we showed the coexistence of immunodeficiency and SLE phenotype in APDS1, and the inhibition of rapamycin in activated Akt-mTOR signaling pathway.
关键词:Activated phosphoinositide 3-kinase dsyndrome 1;Autoimmune disease;Immunosuppressive therapy;PIK3CD;Systemic lupus erythematosus;
研究简报2020-03-17
Yong-guo Zhang,Yinglin Xia,Jun Sun
Vitamin D receptor (VDR) executes the main biological functions of its ligand vitamin D. VDR/vitamin D plays critical roles in regulating host immunity, maintaining barrier functions, and shaping gut microbiome. Reduction of intestinal VDR has been reported in various diseases, including inflammatory diseases and colon cancer. However, it is always challenging to get biopsies to test the pathologic changes of VDR in intestine. In the current study, we reported a simple and sensitive quantitative PCR (qPCR) method to detect reduction of intestinal VDR using fecal samples. We validated this method in several experimental models, such as colitis, bacterial infection, and aging. We further correlated the qPCR data of VDR with the protein level of VDR in colon or serum 25 (OH) D3 in mice with different VDR status (VDR+/+, VDR+/-, and VDR-/-). Our data indicate that the qPCR method to test VDR using fecal samples could detect the expression level of intestinal VDR in various diseases. Our study highlights the feasibility, sensitivity, and simplicity of a molecular method to study the status of VDR as a biomarker.
关键词:Aging;Biomarker;Correlation;Infection;Inflammation;Microbiome;Salmonella;Vitamin D deficiency;